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High resolution modeling of extreme events

* Goal: To study the impact of air-sea coupling on

extremes
— Coupling can directly affect the extremes (e.g. hurricanes)

— Coupling can affect the mean state simulation, which can
indirectly affect the spatial and temporal characteristics of
extremes

 Methodology:

— Use a regional coupled model (27km — 9km resolution)
— Focus on the Atlantic basin and adjoining continental areas



AOGCM bias of summer (JJA) tropical Atlantic SST

« Eastern equatorial Atlantic
» Southeastern tropical Atlantic
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SST biases in Tropical Atlantic simulations

 Large warm bias in Eastern Equatorial Atlantic (EEA)
and South Eastern Tropical Atlantic (SETA)

— Is it caused by errors in the atmospheric model, the ocean

model, or both?

Is it due to local errors or remote errors?

 Some hypotheses proposed:

Under-representation of low-level clouds (Huang et al., 2007)

Under-representation of coastal upwelling (Large &
Danabasoglu, 2006)

Sub-surface ocean advection (Xu et al., 2011)

Equatorial trade wind bias associated with Amazon convection
errors (Richter & Xie, 2008)

Spurious barrier layers in the ocean (Breugem et al., 2008)



Texas A&M Coupled Regional Climate Model (CRCM)

Domain Grid(XYZ) AXY At
WRF 107°W-25°E, 33°S-52°N 1537x1123x27 9km  20s
ROMS 98'W-21°E, 33°S-52°N 1391x1123x30 9km 600s



Climate model tuning
Whack-a-mole!

Amazon

v




Uncoupled and coupled simulations

Designed based on atmospheric parameterization sensitivity to test
relationship between equatorial Atlantic trade wind and SST bias

Four simulations:

« “Uncoupled wet”
« “Uncoupled dry”
« “Coupled wet”

« “Coupled dry”
Simulation name

Parameterization “Dry” “Wet”
convection KF BM
SW/LW radiation CAM/CAM Goddard/RRTM
PBL YSU YSU
LSM Noah Noah
microphysics Lin Lin




Role of Bjerknes feedbacks
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Hurricanes and air-sea interaction

 Hurricanes: a low-probability, high impact event

— Intensity is more difficult to predict than track

e Interaction with ocean can limit hurricane intensity

— air-sea interaction has bigger effect on the intensity and the
track

— Slow moving hurricanes can interact with
* Oceanic mixed layer
* Oceanic “barrier layer” (see poster by Balaguru et al.)

* Oceanic eddies (e.g., Loop current eddy)
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Simulated hurricane
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“Perfect Model” Experiments

* Coupled (atmosphere+ocean) Control Simulation:
e A single CRCM simulation May [ to October 30
o WREF initial and boundary conditions: NCEP Reanalysis
 ROMS initial condition: from long spin-up run
* ROMS boundary condition: from SODA reanalysis
» Uncoupled ensemble of atmosphere-only runs:
» Select an ensemble of TCs (19) from the control simulation

o [nitialize WRF’ at the beginning of each TC from the control simulation

* Keep SST constant at its initial value
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TC track of the coupled run (GJuly~21 July) with 55T of 21 July

Examples of Simulated TCs in
CRCM and WRF-only runs




Latent Heat Flux vs. ASST

Scatter plot of Area-mean LH difference (W/m2) vs SST difference (K)
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Effect of Air-Sea Coupling on TC Intensity

Scatter plot of Intensity difference vs SST difference
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Some conclusions

Warm bias in Eastern Equatorial Atlantic is likely due
to local trade wind bias

— Seen in the uncoupled model but amplified in the coupled
model by Bjerknes feedback

— Remote convection errors or barrier layer biases not a major
factor

“Perfect model” experiments can capture the impact of
air-sea coupling onhurricane evolution
— Track simulations are not that sensitive to air-sea coupling

— Intensity and size are sensitive to coupling, with coupling
acting as a negative feedback that limits hurricane strength
and size









Questions

* How important is ocean-atmosphere interaction in 1TC

development?

* [n particular, will ocean-atmosphere interaction have an

effect on TC' s intensity, speed and. trajectory?
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Cold water J'ake of
Hurricane Dean 8/26/07
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Texas A&M Coupled Regional Climate Model
(TAMU-CRCM)

Regional atmospheric model coupled to regional ocean

model

Lateral boundary conditions from global coupled

model or reanalyses



Atmospheric component:
Weather Research & Forecasting Model (WRF)

Developed at NCAR
27km and 9km horizontal resolution, 28 vertical levels

NCEP-NCAR reanalysis for boundary conditions and
initial conditions

Physics parameterizations:

WSM 3-class simple ice (Microphysics), CAM
Radiation, YSU PBL, Thermal Diffusion land scheme,
Kain-Fritsch cumulus convection scheme



Oceanic component:
Regional Ocean Modeling System (ROMS)

 Developed at Rutgers University/UCLA
 1/12° (9km) Horizontal Resolution & 30 levels

(d Boundary conditions derived from Levitus observational
data.

O NOTE: The ocean model is about 20 times faster than the
atmospheric model, for the same horizontal resolution!

 Configuration: 3rd-order upstream bias for 3D momentum,
4th-order centered for 2D momentum, harmonic horizontal
mixing, recursive MPDATA 3D advection for tracers,
quadratic bottom friction, Mellor/'Yamada Level-2.5 closure



JJA barrier layer thickness
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Effect of air-sea coupling

The most notable effect of air-sea interaction 1s its impact on TC
intensity. On average, WRF-only simulations over-estimate TC intensity
by 6%, which i1s attributable to the lack of surface cooling, resulting in an

increase of latent heat flux exchange.

TC tracks are also affected, albeit to a lesser degree, by air-sea
interaction. The uncoupled WRF simulations can accurately track TC
trajectories simulated by the coupled model up to 5 days, suggesting that
even with a perfect initial condition, uncoupled atmospheric models may

only make accurate TC forecasts in short-range.

TC speed 1s not significantly affected by air-sea feedbacks.
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Psfc difference (Pa) (coupled-uncoupled)
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Scatter plot of TC radius (v10=17m/s) difference vs SST difference (K)
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Areamean LH {W/m2) difference {uncoupled-coupled)

Scatter plot of Area-mean LH difference {(W/m2) vs SST difference (K)
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Computational Resources
EOS (eos.tamu.edu)

Linux (RedHat Enterprise Linux and CentOS)

324 Nodes, 2592 Processing Cores

7,920 GB Memory

120 TB disk: DDN S2A9900 RAID Array

Total Cores Used: 1,024 (976 for WRF, 48 for ROMS)
Coupling frequency: 1 hour, Output frequency: 6 hours
Wall-clock computing time: 72 hours

Model integration time: 158 days (May 15t to Oct 5™)
S1ze of Model output: ~ 3 TB
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Cloud — insolation — land temperature feedbacks
cloud water mixing ratio - CAM
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Example of land-atmosphere feedbacks

CAM_NOAH gcloud e5(kg/kg) 2S—2N;55W—65W
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wh:RRTM_NOAH:gr:CAM_NOAH precip
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Depth of 20°C isotherm — JJA

NCEP CFSR
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JJA rainfall bias
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« “dry case” simulates a southward displaced ITCZ that is worsened by coupling.
» wet bias covers warm eastern equatorial SST bias in coupled, but not
uncoupled “wet case.”



Depth of 20°C isotherm — JJA

NCEP CFSR
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JJA rainfall bias
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« “dry case” simulates a southward displaced ITCZ that is worsened by coupling.
» wet bias covers warm eastern equatorial SST bias in coupled, but not
uncoupled “wet case.”
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recipitation biases in regional model

w27 _dry

R I R R R
\
N .

lla—’ido¢.--->

eesaayy
sy

IR

-25 -21 17 =13 -9 -5 -1 1 5 9 13 17 21 25 -25 -21 17 =13 -9 -5 -1 1 5 9 13 17 21 25

(©) w27r9_wet w27r9_dry

z v
R I R R R
T e
i/ ARy

v v

ey e g\

B NN
TIIINNNNN\N

o I T I
Latvray v
IR R
L
< NN NN
A

20E 0 0

-25 -21 17 -13 -9 -5 -1 1 5 9 13 17 21 25 =25 -21 17 -13 -9 -5 -1 1 5 9 13 17 21 25



Tracks and Intensity of All Tropical Storms

D TS 1 2 3 4
Saffir-Simpson Hurricane Intensity Scale




Iso-surface of perturbation pressure
(color: surface temperature, arrows: winds)




Conclusions

L Coupled regional climate model (CRCM) is a viable
approach for high-resolution coupled simulations in the

Atlantic region
- Less expensive than global high-resolution modeling

- Ability to focus phenomena in one region without being
affected by simulation errors in other regions

(] Potential applications
- Dynamical downscaling in a coupled system for

temperature and rainfall statistics
- Climate change and hurricane statistics




Air-Sea Feedback Effect on TC Track and Speed

Ensemble mean TC center deviations between coupled & uncoupled TCs

TC center deviation distance (km)
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OLR on 6 July of the coupled run

Outgoing Longwave Radiation
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